Harnack's inequality for quasilinear elliptic equations with generalized Orlicz growth
نویسندگان
چکیده
We prove Harnack's inequality for bounded weak solutions to quasilinear second order elliptic equations with generalized Orlicz growth conditions. Our approach covers new cases of variable exponent and (p,q) conditions.
 For more information see https://ejde.math.txstate.edu/Volumes/2021/27/abstr.html
منابع مشابه
An Orlicz-sobolev Space Setting for Quasilinear Elliptic Problems
In this paper we give two existence theorems for a class of elliptic problems in an Orlicz-Sobolev space setting concerning both the sublinear and the superlinear case with Neumann boundary conditions. We use the classical critical point theory with the Cerami (PS)-condition.
متن کاملAnisotropic quasilinear elliptic equations with variable exponent
We study some anisotropic boundary value problems involving variable exponent growth conditions and we establish the existence and multiplicity of weak solutions by using as main argument critical point theory. 2000 Mathematics Subject Classification: 35J60, 35J62, 35J70.
متن کاملQuasilinear Elliptic Equations with Critical Exponents
has no solution if Ω ⊂ R , N ≥ 3, is bounded and starshaped with respect to some point, and 2∗ = 2N/(N − 2). In (P0) the nonlinear term is a power of u with the critical exponent (N + 2)/(N − 2). This terminology comes from the fact that the continuous Sobolev imbeddings H 0 (Ω) ⊂ L(Ω), for p ≤ 2∗ and Ω bounded, are also compact except when p = 2∗. This loss of compactness reflects in that the ...
متن کاملQuasilinear Elliptic Problems with Nonstandard Growth
We prove the existence of solutions to Dirichlet problems associated with the p(x)-quasilinear elliptic equation Au = − div a(x, u,∇u) = f(x, u,∇u). These solutions are obtained in Sobolev spaces with variable exponents.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Differential Equations
سال: 2021
ISSN: ['1072-6691']
DOI: https://doi.org/10.58997/ejde.2021.27